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FOREWORD

. The fiight of a gliding parachute in a uniform wind fieid is examined using the methods
of Optimal Control Theory. Thi. report pres nts this analysis and is part of a continuing

effort directed toward investigating methods which will improve the accuracy and dispersion
charact wistics of airdrop systems.

This study was conducted uv~uer Department of the Army Project
No. 1F162203AA33 Drop Zore Dispersion Studies by Dr. Allan E. Pearson, Professor,

Divivion of Engineering, Brown University whiie he was assigned tn the Airdrop Engineering
Laboratory as & visiting scientist.

Appreciation is extended Mr. Thomes F. Goodrich, Mr. Arthur L. Murphy, Jr., and

Dr. Edward W. Ross of the U. S. Army Natick Laboratories for their help Juring this
study.
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l. Introduction

The automatic control of gliding parachute systems has been considered for the
recovery of sounding rockets and in various military airborne operations. Control can
be effected hy a ssrvo-motor pulling on the shroud lines of the parachute which causes
a banked tum of the parachute and a change in the direction of flight. Flight tests
of an automatic-homing control system have been reported (1] which detect the angular
error between the line of flight aild the target by means of a ground based transmitter
and a pair of directional antennas located on board the parachute. Referring to Fig. 1
where p Is the position vector of the parachute relative to the fixed target in the horizontal
plane, v is the horizontal component of the velocity vector of the parachute relative to
alr, and w is the wind velocity vector, the automatic-homing control system attempts
to align v with -p, i.e. to keep the angle y near zero at all times. Goodrick [2] analyzed
the wind effects on a bang-bang (full-on or full-cff) version of this control system and
showed that Incressing the horizontal systern velocity relative to air tends to decrease
the terminal distance error from the target in the presence of wind distortion. Murphy
[3] analyzed the performance characteristics of the automatic-homing control system for
the ideal s'tuation In which the angle v in Flg. 1 is maintained null at all time. Under
the condition that the magnitude of the wind velocity vector w be less than the magnitude
of the system horizontal velocity vector v relative to air, i.e. liwli<lvll, the parachute
possesses a wind penetrating capability and the potential of reaching the target under
arbitrary wind directions. The assumption is made that the initi:l altitude is properly
chosen in accordance with the wind angle /W and the ratio |lv/l/lvil.

In this report the contro! of a gliding parachute is vienved in the context of cptimal
convol theory. The basic philosophy is taken that at some time t, intermediate between
the launch time O and the terminal time T, O< t; <T, an estinizte @ of the wind
vector is made avallable based on measurements taken In the intervalO< t < t,. Under
the assumpt on that the wind remains constant over t, St<T, an optimal control problem
Is formuiate! which minimizes the terminal distance error from the target. The solution
to this problem Involves integrating a system of four nonlinear differential equations with
mixed boundary conditlons, i.e., a two point boundary value problem. An approximate
solution to this problem is obtained which results in a sub-optimal feedback control law.
Since the sub-optimai solution is a closeddocp control law, this feedback controller can
be used on-line as new measurement= of the wind vector w become available. The filtering
problem of estimating the wind based on avallable measurements is not considered in

_tnls report.
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The equations of motion and optimal control system formulations are presented in
Section 1I. The sub-optimal control solution is presented in Section I1l. Various
extensions of this work are indicated in Section V. :

iI. Optimal Control Problem Formulations

¢

Assuming a constant wind w in the horizonte! ~lane, a constant rate of descent v ,
and an initial altitude hy, at launch time, the equatio of motion governing the parachute
can be rapresented in the hotizontal plane according to

P = v + w, <Kt<T = hyv (1)
In this report the velocity vector v(t) will be assumed to be constant in magnitude

Ivithil -‘[Ivi R +va (03] % = a = constant.

Then v(t) can be represented by

B

v kt) = & cos wit)

(2)
v, (t) = a sin «l(t)

where the angle w = L' is related to the bank angle ¢ of the parachute via the well known
relation :

s
w i tan ¢. (3) !

Since the bank angle $ can be directly manipulated by changes in the servo-motor
connecting the shroud lines, it is sufficient to summarize (1) — (3) hy

y
Pr = acosw+w,
P = asinw+w, (4)
w = u to <t<T

whers u is regarded as the control variab:.
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Let plty), wity) and w be given at some initial time t,, in the interval 0<t, < T.
A performance index which reflects a number of desirable features for this problem is 1

q Qs T 2
P = Hip(T? + le(T) -V —xP + 22— futPdt  (5)

where q; and q; are non-negative weighting parameters. The first term in (5}, 1/2|ip(T)}i2,
refiects tha desirability of minimizing the Euclidean distance from the target at the terminal
tima T. The second term with weighting paramater q, reflects the desirability of having
the parachute point upwind at tha terminal time in order to reduce the total horizontal
velocity at touch-down. The third tsrm with welighting parameter q, reflects the cost
of control sffort in terms of the ‘““a‘erage power” expended over the interval o < t
<T.

Before proceeding with the necessary conditions for a minimura of (5), some further
comments regerding the role of the weighting parameters is in order. In the absence
of any other constraints on tha control variable v, it is necessary to choose q; >> 0 in
order to be sssured of a meaningful solution. Physically, an optimal control solution
with g, small wili laad to reiatively smailer values of the terminal distance error |Ip(T)|
but wlll generally require relatively larger bank angles ¢ of the parachute, in contrast
with larger vaiues for q;. In the Interest of making [Ip{T)|| as small as possible, a meaningf
solution doe- resuit for q, = 0 provided a constraint on u is assumed of the form {u(t) <M,
i.e. the bank arqle ¢ is affectively limited by s e upper bound. However, the analytical
solution to this problem is less tractable than 1. unconstrained problem with q;. > O.
As wlill be Indicated in Section 118, the solution w: the constrained optimization problem
is bangbang followed by a pnssibla null interval, i.e. u(t) = £+ M or 0, which implies
instantaneous reverssl of bank angies. Since the dynamics of the servo-motor and bank
angle rates are not reflested in the equations of motion (4) the value of this probiem
{q; = O) is probabiy of less practical importance although it is of theoretical interest.

\"';

with weighting perameter q,. There might be some motivation for choosing q; = o and
adding the terminal constraint that w(T) = LW + x, However, as in tiie case with potential
terminal constrainst on p(T), it wili not generally be possible to satisfy such constraints
in the fixed Interval (t,, T) tor any but a smaii set of initial conditions. In a practical
impiementation of an optimai control iaw, q, would probably be chosen as zero with
; a programmed command that with A T seconds to go thwe parachute execute a rapid turn

: into the wind regardiess of the distance from the target. '

}"‘ A turther comment regarding the performance indax (5) refers to the second term

)
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A. Transformation to Normalized Varisbles .

Let a time-varying transformation of the origin be made according to

Y

Then minimizing the terminal distance |ip(T)ll is equivalent to minimizing lly(T)I.

= p + (T-thw Lt <t<T

addition, let the independent varisble be transformed via

T

- b
T

and define new dependent variables via

X,

= Y1 = Ya

aT-tg) " °  alT—to)

Xy ® W,

in terms of thess variables, the equations of motion (4) become

Xy

X3

X3

= COS X,
= sin X3

= (Tt OKr<1

where prime denotes differentiation with respect to T.

The performance index (5) becomes

.P.

where

0,

2(T_¢.)2
L L, [|x,(1)|"1+ s (P + QyIxg(1) = 2% — #P
+Q,f-p(r)|’dr]
0
i 1! q

= 2 1
a3 (T-t5)? , @ al(T-tg) .

7

(8)

(9)

{10)

(11)

in
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Hence minimizing (5) or (10) is equivaient to minimizing

L

P=% bixi (1 + Ixa (1) + Qlxal1) = & ~ ap?

1 (12)
tQ S |u(r)|’dr]
0

The major advantage to reformuiating the probiem in terms of the x and 7 variables
reiates to the caiculations rieeded in deveioping the sub-optimal controi law in Section 1il.

B. Necsssary Conditions for Optimal Control

The Hamiitonian for the unconstrained optimai control problem of minimizing (12)
(Q;>0) with the equations of motion (8) is given by

HA\x,u) = A, cosx; + Ay sinxy + (T-tg)A\3u + % Q, v? 113)

where (A, A2 \s) are the co-state or adjoint variabies for this problem which satisfy the
differertiai equations

Mm-S .

8)(,

M= W ag (14)
ax:

Ay = - L I A; sinXxs ~ A; COS X3
ax3

Appiying the “Minimum Principle’’ of optimai controi theory [4] , the necessary conditions
for (12} to achieve a minimum are that H{\,x,u) be minimized over u, i.e.

T=

U. = _Tto k3 ’ (15)
and that the foilowing transversaiity conditions be satisfied:

M(" b Xl(" ' kz“) - Xz“) (16)

A3(1) = Q; [x3(1) = ¥V - 7] .

-
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Combining (9) with (14) — (16), and aefining
Xe = Ay, ' ' (17)

it foiiows that the necessary conditions for the unconstrained optimai control probiem
involve solving the two point boundary value problein:

Xy = CO$ X3

X3 = 8in x4

) (18)
XS‘ [ R— M) X4
Q;
x¢ = Xxp(1) sin x5 — x3(1) cos x,
subject to the given initisi conditions
x(0) = —L1— [pyitg) + (T—tgi wy)
. aT-tg)
0 = —~—1 pitg) + (T—t) wa] (19)
a(T-ty)
x3(0) = wlty) ‘
and the terminai condition !
Xe{1) = Q; [x3!1) — ¥ - 7] . (20)

By u reduction of (18) to three differentiai equations involving dx;/dxs, dx,/dx,
end dx,/dx,, it is possible to derive three algebraic equations in the three unknowns
x; (1), x2(1) and x4(0) which depend or: the given Initiai conditions in (19) However,
these equations involve Eiiiptic integrais of the first and second kind with arguments
deperdiing on the mixed boundary data (see Appendix). He~ce an exact anal/ticai soiution
to (16) — (20) via this spproach does not appear promising, aithough some spproximations
to these equations might be fruitful. Thic has not been explored in any detaii.

-
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in the case of the constrained optimsi control problem in which Q; = 0 and u is
constrained via |u{tll < M, the Hamlitonian becomes

R\ xu) = A, cos x5 + A3 sin x3 + (T ~ t5) Aju

where (A, A; ;) satisfy the same differential equations as in (14). However, in this case
the minimum principle lsads to

: Mt >0
u* = J+M If A3 <0
Lnn ccnclusion If Ay = 0

The appropriate value for u® over 8 singular intervai guring which A; = 0 can be resolved
by the condition that A; =D = A3 = 0 = x, = constant = x§ = 0= u* = 0. Moreover,
it a singular control Interval Is achieved on some time interval contained within the given
interval to < t < T, the control remains singular, i.e. null, throughout the remainder
of the Interval. This fcliows becguse u* = 0 = x; = Q which means x, remains at zero
for the remainder of the in‘aerval. Hence the optimal control is bang-bang-cif for e
constrained probiera with no intermediate singular intervals. It is difficult o say how
manv switches will occur during the interval ty, < t < T, although presumably more
switches will occur when the parachute is close to the target with a iarge amount of
time to go untll touch down.

In summary, the solution to the constralned optimal control problem involves solving
the two point boundary value problem:

’

X = COs X,

X3 sin X,

x; = —(T = to) M Sgn ! 4)

’

Xe

x; (1) sin x5 — x3{1) cos x,

subject to the initial and terminal data in (19) and (20), where the ‘‘Sgn’ function is
defined by

-




~ 'w I <
+1ifx>0
Sgnix) ] Oif x=0
-1 ifx<0

The open-loop optimal controi solution u®(rpit,),wity)), 0 < 1 < 1, regarded as
a function. of the initiai conditions p(t,) and w(t,), becomes a closed-‘oop or feedback,
controi iaw for elther of the above probiems simply by choosing r = 0 and using the
continuous variables 1:(t) and w(t) in place of pit;) and w(t,). in this viay u*{0,p(t),w(t))

is the optimai control for every t based on continuous measurements in p(t) and w(t).

5. A Sub-Optimel Fesdback Control Law

In the interest of obtaining a feedback, i.e. ciosed-loop, contre' jaw, an approximate
soiution wili be deveioped in this section to the necessary conditions, (18) — (20), fr
the unconstrained optimal control problem. Let a parameter € be defined by

4
€ a (T—tO), — a’ (T_tO) (21)
Q, i
and consider (18) — (20) In vector notation:
-CO’ Xq ]
x = f(x,r€E) = 1 sin X, (22)
€ x4
x; (1) sin x3 — x3(1) cos x,
‘A x(0) + B x(1) = ¢ (23)
where the matrices A, B and { are glven by
1 0 0 O 0o 0 0 V a
A_O‘IOO,B, 0000",_5
o 0 1 0 0o 0 0 O v
0 0 9 O 0 0 -Q, 1 -Q,
(24)
8
! .‘s ’ ! " 'k”
\ -

A




~ R "

and the constants (xf8,v.8) are defined as

1
a({T-t,

a= x(0) =

- [piitg) + (T-to)w ]

1
= x,(0) = (ty) + (T—tolw, ]
B = x; a(T—to) [pafty tolwz (25}

v = x3(0) = wlty)
c=N +

I1. view of the analytic properties of the function f(x,r,€), s Taylor series expansion of
the tolution x(t,€) to (22) and (23) ebout € = 0 will exist for sufficiently smai! €. Thus

o0
- Mxire) | €n
xir€) = T X = (26)
€=0

and an approximate solution to the problem is renresented by retaining a finite number
of terms in the series (268). The corresponding epproximation to the optimal control
u® given by (15) and (17) is obtained from

N
fire)n- —E_ 3 A€ l en 27
T-t, n=0 o€" €=gn!

The sub-optimal fsedback control lew follows by choosing r = 0 in (27) and letting the
inltisl time ty in (25) be replaced by running time t.

Before proceading with the caiculatior:s of the coefficients in (26), it should be pointed
out that € = 0 corresponds to no control effort (u = 0) exponded on the interval
to S t & T. This Is evident since € = 0 implies Q; = oo for which u = 0 is the optimal
solution in minimizing (12). In other words, th: nominal solution in this approximation
is the uncontrolled descent of the parachute.

In order to simplify the notation, let the coniponents of the vector coefficients in
(28) be represented by (sn, bn, 2n,dn) according to

‘\
k]
».

‘%}‘MM i
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L %, (1) Vo 0" (7€)
() ~en P bn(r) e
€s( €a(
oNx, (r,€) an €
cplr) = aé" J, dnir) = ——’;*ér{'—)-j)
€=0 €

The zerceth order (n = 0) term uw (28) is then obtained by solving

cos ¢o
sin ¢q

0

ag(1) sin ¢ — bg(1) cas ¢,

subject to the boundary conditions

2,(0) = a ,

bo(o) = B ’

do(‘l) = Q, [co“) )

The solution to (28) and (29) is readily obtained as

a5(7)
bo(f)
co(f.)

dolr)

1 X3

a+1C
B+17S
1

(1-10 + Q)ly-8)

whete C =cos-, S = siny and

D ~fC -aS

have been used for shorthand notation.

(0) = 4

10

AN

(28)

(29)

(30)

(31)
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The first order (n = 1) term In (26) Is obtained by differentiating both sides of

(22) with respect to € and then putting € = 0. This yields the system of equations
for (.ll blo Cs, dl):

H = -8¢
by = Cg (32)
cy = ~dg

d;’ L] ll("s-b1“)c + [‘o“)c + bo“)SICl

The boundary conditions for (32), as for all subsequent terms in the series (26), are given
by

3%%(0,€) Mx(E |,
A ..a_e._ng. l«o- B "'a'é"rf"" 0 n»i. . (33}
€40 €=0

This follows from (23} and the fact that {A,B.) to not depend on €. Thus (33) yieids
anl0) = 0, bn(0) = O, cn(0) = 0
. (34)
dn(1) = Q, cn(l), n>1
The integration of (32) subjsct to (33) with a5, by and d, given by (30) ylelds
&) = - s(—%  + (Q,(y-8) - D) ;-'1

byir) = cl ¢+ (0,(7-3)_0)7_'1

clr) = (Qy(y-8)=D) 7 + %r’ (35)

dy(r) = d,(0) - [%Q,; (y-8) ~ 1/3 D]

+(14aC + 28)[(Q, (y~8)-D) %’ +D g—’l

n

%&ﬂmm@ I e e
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where the initial condition on d, is given by
d;(0) = 1/3(aC+8S) D + Q, [(y—~8—1/2D)Q, — 1/2(ca. +854],

The fint two terms of the sub-optimal feedbeck controi law (27) with ¢ = 0 and
N = 1 have bouq‘obulned up to this point with

A

H0,€) = — Tfta [do(0)' +d, (DIE]
€

T-1

£ [y--t+ey-5-120)0, -E(aC+ps) Q,
Tty 2

[ +§-(ac+ns‘n D + - ee

| The higher order terms in the Jeries (26} become increasingiy more tedious to obtain,
For n = 2, the differentiai equations to be soived /aftar some simplification) ere

% = —Ciuli=Sq
bs = -S[c,]1? + Ce,
_2dl

d;

Sa,;(1) —Cby(1) + Dlc,1? + [1 + o€ + fS]c,

> — e Pg—
O
we
[ ]

where ¢, (1), c,(7), d, (r) are given by (35) and the bounuary conditions by (34). These
equations were integrated under the special casse Q; = 0 with the result that the desired
initial- condition on 4; is

' - 0: ep[-l-2p +2
\ 4 4 (CHS))

15
T The interesting feature sbout the case Q, = O is the observation that the sub-optimal
control lsw contains D ss a factor — at least as far a3 the first three terms in (27) have

} besn computed. Thus it would appear as though the quantity D in (31),
i’ ' D = x,(0) cos x3(0) — x,(0) sin x,(0) (37)

12
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piays 8 major role in the optimai feedback controi law.

it is instructive to refer the sbove obtained sub-optimai controi iaw back to the

originai cocrdinste system. Assuming Q, = 0 i i36) and referring to (37), (25), (21),
(9) and (7), this results in

Oa =0 veopr s = iy (38)
G2 . 3Ga

in the above, y = y(t) is the moving-origin coordinate s.ystein defined in (6), i.e.

y=p+ (T~t)w,

and E is the 2 x 2 matrix

E o1
1)
which effectiveiy generstes the D term in (37), le.

YEV = yiv; —y3vy-

IV. Corcluding Remerks

Given an estimate of the wind vector w at some initiai time to intermediate between
lsunch and touch down, anc given the initiai position and velocity vectors (relative to
air} of the perachuts, th) optimai control of the parachute has been considered which
strives to minimiza the 'errainal distance of the parachute from the target at the time
of touch down. A subuptimal faedback controi law has been obtained which can be
used in a closed-ioop manncr based on continuous measurements of the position and

valocity vectors of the parachutw. The first order approxiniaticn to this controi iaw is
strikingly simple and tskes the form

- 1{-'-:—‘1’— (Yiva — Ya¥y) 139)
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where y; = p, + (T — tyw; and y; = p; + (T=tlw: are the horizontai components
of the position vector p = p(t) of the parachute at time t with the origin transiated aiong :
(T — t)w for each t in the interval 0 <t < T, and v = v(t) is the parachute velocity
vector relative to air In ihe horizontsi plarie. in order for this controi law to be effective,
the initiai launch position must be in the viGinity of the free descent path of the parachue
which wouid hit the target at tcuchdov/n in the presence of a constant known wind.
This is a reasonable asumption in view of the limited degree of controi avaiiable in the
gliding psrachute syster:. ! ‘

The above control iew can be easily updsted as new estimates of the wind become
avaiiable. rlowever, it is the D.C. or mean vaiue of the wind, rather than the instantaneous
value, which should be used as the estimate since the contro! law is cotimai only for
a coratant wind vector w on the ensuing interval T 2 t > to. Aithough (38) is oniy
a first order approximation, the term in brackets, y,v; —vy,v,, appears to be a
homogeneous factor in each of the terms of the Tayior's series expansion (27). This
was oniy vaiidated for the first three terms of {27) and applies to the special opiimization
probiem of minimizing the performance index (6) with 5, = 0 and q; > 0.

The reciprocal of the weighting parameter q; in (39) represents the gain of the
feedback controiler which must be adjusted to achieve a smail terminal distance error
at touchdown without incurring excessive bank angies during the parachute maneuvering
over tha interval 0 < t < T. The bank angle ¢ upon commands from the controller
electronics must be designed to achieve tho desired relationship

a(T-t)?
g G

¢ = tan’? Viva = y,v,) (40)

without significant deiays,

Future work should inciude the foilowing: (i) A computer simuiation of the
. suboptimal controi iaw and a comparison of the results with optimai control trajectories
obtcined by sciving the two point boundary value probiem for various initial conditions.
') Derivation of the appropriate fiitering equations for estimating the wind based on
avaiisble measurements. Computer simulation of the controller-filter combination for
random wind profiies. (iii) A formulation of the problem with a random wind which
soeks to minimize the expected value of the terminal distance from the target. in this
vein, random terminal times might be eppropriately studied to account for inaccurste
aititude data. (iv) A formulation of the problem with the magnitude of the parachute
welocity vector a controi varisble in addition to the directior.
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Appendix 1

Reduction of (18) to Elliptic Iritegrals

oL COS X3

’ 1)2 - sinx; @1)
dX3 Ex, dx; °* Exq -
dx, X2 {1)cosx3 — x;{1) sin x,
dX3 € 9
The third of these equations cen be integrared directly:
x} = C + % [x, (1) cos x5 — x3(1) sin x;] (42)
where the constant of integration C, is given by
C,

- xg(1))7— 2

——

%, (1) cos x3(1) — x;(1) sin x3(1)].

N IM

c, + 2

(43)
Using the relation Jj 9—;‘-3 = -Efdr’' = —€rfor 7= 1 the first integral is obtained as
4 .

= |F(k,$1) — Flk, o)l

where

(44)
d =N/ (112 ¢ Ix (NP,
o 4 (46)
C, €+2d
do= 1/2 [x5(0) + tarrt Xal1) (46)
X1(1)
o= 1/2 [xs (1) + tart 2Xa{1) ]
X|(1)

18
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Successive divisions of the equations in (18) by x; yields (with € defined by (21):
dx,

-




and F(k,¢) is an Elliptic integral of the first kind.

Substituting (42) into the first of the equations in (41) leads to the expression

x (1) = x,(0) = ¢ é [E’—':"-E- [\/c, + Zei’- cos (x5(0) + B)

_\ﬁ + Zg- cos (x5 (1) + a)] , \T%%[ (an
e 1 ——
< L.

( —%—)(F(k,%) ~ F(k, o)) + f,—' (E(¢) ) — E(¢o\a'))]}

whers ¢, ¢,, d, C, and k are as defined above,

B = tan~! ’ﬂl)., sind a = k3
x; (1)

and E(Q \a)is an Elliptic integral of the second kind.

Substituting (42) into the second equation of (41) will lead to a similar relation
as (47) involving Elliptic integrals of the first and second kind. This equation in conjunction
with (44) and (47) comprises three algebraic equations in the three unknowns x, (1), x, (1)
and x,(0), given the initial conditions x, (0), x,(0) and x,(};. However, the argumants
of the Elliptic integrals depend on the boundary data in a8 mixed way.
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